

LACKIER- & OBERFLÄCHENSYSTEME

DER BLO - FARB-HEIZSCHLAUCH

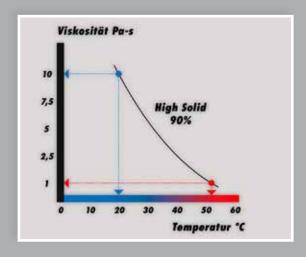
Elektrisch beheizt

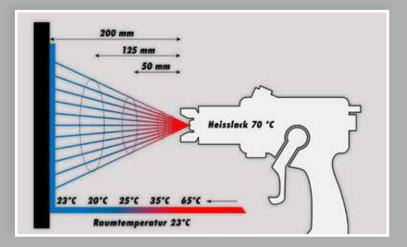
Das Verdünnungsmittel der Zukunft ist Wärme

Leichter und weicher als Ihr Standard-Schlauch

Böhnstedt Lackier- und Oberflächensysteme GmbH Telefon: +49 (0)3349 180 370

BLO




WIRKMECHANISMEN UND IHRE AUSWIRKUNGEN

Der Temperaturverlauf des Beschichtungsmaterials

Das Beschichtungsmaterial erwärmt sich kontinuierlich im Schlauch auf die Wunschtemperatur (siehe Titelbild).

Die Kurve der High-Solid Lacke zeigt, dass bei Temperatursteigerung von ca. 20 °C auf ca. 50 °C eine Viskositätsreduzierung auf ca. 10 % erfolgt. Im Spritzkegel kühlt der Beschichtungsstoff wieder auf Raumtemperatur ab und trifft in der hohen Originalviskosität auf das Beschichtungsobjekt (hohe Standfestigkeit an Flächen, Kanten und Ecken).

Auswirkungen auf die Rheologie und Eigenschaften von Beschichtungsmaterialien

- Very-High-Solid (Beweglichkeit der Makromolekülketten werden erhöht)
- Thixotropie (Semipolare- u. Wasserstoffbrückenbindungen werden aufgehoben)
- Reduzierung der inneren Zähigkeit 🧢 (Reduzierung der Van-der-Waals-Kräfte)

Very-High-Solid-Materialien (bis 100 % Festkörper) können mit Drücken unter 200 bar im Airmix-Verfahren verarbeitet werden, da durch die Farberwärmung eine Viskositätsreduzierung um bis zu 90 % erfolgt.

Das Airlessverfahren ist nicht mehr erforderlich.

UV-Lacke werden durch Erwärmung auf 60–70 °C gut verarbeitbar oder bei Automatikanlagen auf konstanter Temperatur gehalten (30 °C +/- 1 °C).

Bei der Verarbeitung von PUR-Hydro-Lacken lässt sich die Kochergrenze von ca. 70 μ Schichtstärke auf ca. 120 μ verschieben. Hydro-Lacke können mit weniger Wasserzugabe und weniger Thixotropiermittel appliziert werden, wodurch eine Verbesserung des Verlaufes und des Glanzes realisiert wird.

Konventionelle Lacke (Festkörpergehalt 40–80 %) sind ohne Lösungsmittelzugabe mit hohem Wirkungsgrad im Airmix- (60–70 %) und Elektrostatikverfahren (bis 90 %) verarbeitbar.

Niedrigviskose Materialien (Yacht- und Möbellacke) werden durch die Reduzierung der inneren Zähigkeit mit weniger Overspray und besserem Wirkungsgrad appliziert.

TECHNISCHE LÖSUNG

Aufbau und Varianten des Farb-Heizschlauches

Ein im Materialschlauchliegender Heizleiter erwärmt das Beschichtungsmaterial.

Der Heizleiter ist ein patentierter, vielfacher Sandwich-Aufbau als "Einleitertechnologie" mit einer PTFE-Ummantelung.

Die Temperaturmessung erfolgt über die gesamte Heizleiterlänge und nicht punktuell.

Die BLO Farb-Heizschläuche gibt es derzeit in mehr als 70 Standardvarianten (Sonderlösungen möglich), in Hochdruck (250 bar) und Niederdruck (20 bar) in Längen von 3 m bis 60 m, Heizleistungen von 300 W / 230 V bis 4,4 kW / 400 V und Durchmessern von DN 6 bis DN 19.

Steuerung und Funktion

Es gibt 2 unterschiedliche Ausführungen der Steuerung:

- O Die "Variable Steuerung" für ein Höchstmaß an Flexibilität.
- Oie "Micro-Steuerung" für ein Höchstmaß an Bediensicherheit.

Bei der "Micro-Steuerung" kann der Nutzer bei der Bestellung eine Wunschtemperatur angeben, die später nicht mehr verändert werden kann. Bei der "Variablen Steuerung" kann die Temperatur in 1°C Schritten, mit einer Genauigkeit von +/- 1°C, zu jeder Zeit durch den Nutzer geändert werden.

VORTEILE DES FARB-HEIZSCHLAUCHES

Einsparungen:

- Einsparungen an Lösungsmittel (VOC) bis 50 % und Material bis 40 %
- Reduzierung Energieverbrauch
- Kleinere Absaug- und Zuluftleistung (weniger Wasser- und Verdünnungsverdunstung)
- Weniger Overspray
- Längere Filterstandzeiten und Reinigungsintervalle in Kabinen
- Weniger Luftverbrauch (Zerstäuberluft)

Umweltschutz:

- Weniger VOC-Emission
- Weniger Overspray durch weniger Farb- und Luftdruck → weniger Rückprall

Arbeitsschutz:

- Weniger Lösungsmittel-Dämpfe
- Weniger Farbnebel
- Weniger Monomere (Giftige Dämpfe)

Erhöhung der Prozesssicherheit durch:

- Konstante Viskosität bei schwankenden Umgebungs- und Beschichtungsmaterialtemperaturen
- Absolut reproduzierbare Lackierergebnisse
- Weniger Läufergefahr durch Reduzierung von Wasser und Verdünnungszugaben
- Reduzierte Kocherbildung bei PUR-Hydrolacken
- Höhere Schichtstärken möglich
- Overspray minimieren (weniger Druck reweniger kinetische Energie der Tröpfchen)
- Gleichmäßigere Schichtdicken durch Airmix- und Elektrostatikverfahren
- Optimale Kantenbeschichtung (speziell bei Elektrostatik-Applikation)
- Gefühlvolleres Spritzen bei komplizierter Teilegeometrie

Produktionssteigerung:

- Reduzierung der Anstrichschichten
- Höhere Arbeitsgeschwindigkeit

